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Overview  

• Statement of the problem 

• Fundamentals of credibility theory 

• Estimation of credibility coefficients in 

simple models 

• Analysis of variance 

• Extension to more general models 
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Overview  

• Material taken from: 

Taylor G (2007). Credibility, hypothesis 
testing and regression software.  Astin 
Bulletin, 37 (in press) 

• Also appears as University of 
Melbourne Research Paper No. 149 at 
http://www.economics.unimelb.edu.au/SITE/actwww/

wps2007/No149.pdf  

http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf
http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf
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Statement of the problem 

• Suppose you wish to estimate some pricing 
parameter (e.g. claim frequency) 

• You have a measurement of it from data 
– but subject to sampling error 

• You also have some prior information on it from 
somewhere (e.g. industry data) 
– but also subject to uncertainty 

• You wish to form an estimate of the parameter that 
takes both pieces of information into account 

• How should you weight those two pieces of 
information? 
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Example 1 – workers compensation rating 

by ANZSIC occupation code (Taylor, 1979) 

  Pool 

Occupation 
group A 

Occupation 
group B 

Occupation 
group … 

Occupation 
group A1 

Occupation 
group A2 

Occupation 
group A… 

Occupation 
group B1 

Occupation 
group B2 

Occupation 
group B… 

etc. 
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Example 2 – multiplicative pricing 

structure (e.g. Motor) (Gisler & Müller, 

2007) 
• Usual multiplicative pricing 

structure 
  Expected 

values 

Pricing factor A = 

1 2 … J 

1 α1β1 α1β2 … α1βJ 

2 α2β1 α2β2 … α2βJ 

: 

K αKβ1 αKβ2 … αKβJ P
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c
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 =
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Example 2 – multiplicative pricing 

structure (e.g. Motor) (Gisler & Müller, 

2007) 
• Usual multiplicative pricing 

structure 

• But suppose that data is 

sparse for some values of a 

pricing factor 

– E.g. no recorded claims for 

pricing factor A=2 

– GLM will generate fitted values 

of zero for A=2 

• How might model be 

changed to give reasonable 

results in this case? 

  Expected 

values 

Pricing factor A = 

1 2 … J 

1 α1β1 α1β2 … α1βJ 

2 α2β1 α2β2 … α2βJ 

: 

K αKβ1 αKβ2 … αKβJ P
ri

c
in

g
 f

a
c

to
r 

B
 =
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Fundamentals of credibility 

theory 
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Sampling a population 

  

Mean of observations 

Sample of observations 

Distribution of observations 

μ 

X1, X2,…,Xn 

F(x;μ) 

Distribution 
defined by mean 

Independent 
random drawings 

Estimate μ by 
sample mean X ¯  
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Sampling a population with a random mean 

  
Prior distribution of mean 

Realised mean of observations 

Sample of observations 

Distribution of observations 

P(μ) 
with mean m 

μ 

X1, X2,…,Xn 

F(x;μ) 

Random drawing 

Distribution 
defined by mean 

Independent 
random drawings 
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Sampling a population with a random mean 

  
Prior distribution of mean 

Realised mean of observations 

Sample of observations 

Distribution of observations 

P(μ) 
with mean m 

μ 

X1, X2,…,Xn 

F(x;μ) 

Random drawing 

Distribution 
defined by mean 

Called a latent 
parameter 

Independent 
random drawings 



12 

Estimation of a random mean 

  
Prior distribution of mean 

Realised mean of observations 

Sample of observations 

Distribution of observations 

P(μ) 
with mean m 

μ 

X1, X2,…,Xn 

F(x;μ) 

Random drawing 

Distribution 
defined by mean 

Estimate μ by 
posterior mean 

E[μ|{Xi}] 

Called a latent 
parameter 

Independent 
random drawings 
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Bayesian framework 

  
P(μ) 

with mean m 

μ 

X1, X2,…,Xn 

F(x;μ) 

Estimate μ by 
posterior mean 

E[μ|{Xi}] 

Called a latent 
parameter 

Let X=(X1, X2,…,Xn) 

By Bayes theorem 

E[μ|X] = ∫ μ p(μ|X) dμ 

 = ∫ μ dP(μ) p(X|μ)  

      ∫ dP(μ) p(X|μ)  

= ∫ μ dP(μ) ∫ dF(X1|μ)…dF(Xn|μ)  

     ∫ dP(μ) ∫ dF(X1|μ)…dF(Xn|μ)  

Estimate E[μ|X] by a linear 
function L(X) of X 
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Linear Bayes framework 

  
P(μ) 

with mean m 

μ 

X1, X2,…,Xn 

F(x;μ) 

Estimate μ by 
posterior mean 

E[μ|{Xi}] 

Called a latent 
parameter 

Estimate E[μ|X] by a linear function 
L(X) of X 

L(X) is called a linear Bayes 
estimator 

Choose so as to minimise 

∫ [L(X) - μ]2 p(μ,X) d μ dX 

= ∫ [L(X) - μ]2 dP(μ) ∫ dF(X1|μ)…dF(Xn|μ) 
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Linear Bayes framework 

  

        P(μ) 
with mean m, variance τ2 

μ 

X1, X2,…,Xn 

F(x;μ) variance σ2(μ) 

Estimate μ by 
posterior mean 

E[μ|{Xi}] 

Called a latent 
parameter 

Estimate E[μ|X] by a linear function 
L(X) of X 

It may be shown that 

L(X) = (1-z)m + z 

 

where 

z = {1 + Eμ[σ
2(μ)]/nτ2}-1 

Prior 
mean 

Credibility 
of 

Data 
mean 

Prior 
variance 

Data 
variance 

X

X



16 

Linear Bayes framework 

  
        P(μ) 
with mean m, variance τ2 

μ 

X1, X2,…,Xn 

F(x;μ) variance σ2(μ) 

Estimate μ by 
posterior mean 

E[μ|{Xi}] 

Called a latent 
parameter 

Credibility coefficient 
z = {1 + Eμ[σ

2(μ)]/nτ2}-1 

There is a need to estimate the ratio 
of data variance to prior variance: 

Eμ[σ
2(μ)]/τ2 

 
To do so requires more data 
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Estimation of credibility coefficients in 

simple models 

  

P(μ) 
mean m, variance τ2 

μ1 

X11, X12,…,X1n 

F(x;μ1)  
variance σ2(μ1) 

Multiple 
drawings 
of latent 

parameters 

μJ 

F(x;μJ)  
variance σ2(μJ) 

… 

… 

XJ1, XJ2,…,XJn 

X
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Estimation of credibility coefficients in 

simple models 

  

P(μ) 
mean m, variance τ2 

μ1 

X11, X12,…,X1n 

F(x;μ1)  
variance σ2(μ1) 

Multiple 
drawings 
of latent 

parameters 

Sample μ1, μ2,…μJ 
independently from prior (J 
risk classes) 
 
For each risk class μj, draw 
iid sample of n observations 
Xj1, Xj2,…,Xjn 

 

μJ 

F(x;μJ)  
variance σ2(μJ) 

… 

… 

XJ1, XJ2,…,XJn 

X
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Estimation of credibility coefficients in 

simple models 

  

P(μ) 
mean m, variance τ2 

μ1 

X11, X12,…,X1n 

F(x;μ1)  
variance σ2(μ1) 

Multiple 
drawings 
of latent 

parameters 

Sample μ1, μ2,…μJ from prior 
(J risk classes) 
 
For each risk class μj, draw a 
iid sample of n observations 
Xj1, Xj2,…,Xjn 

 
As before, estimate μj by 

L(X) = (1-z)m + z   j 
with z as before 
Still need to estimate 

Eμ[σ
2(μ)]/τ2 

 

μJ 

F(x;μJ)  
variance σ2(μJ) 

… 

… 

XJ1, XJ2,…,XJn 

X
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Estimation of credibility coefficients in 

simple models 

  

X

P(μ) 
mean m, variance τ2 

μ1 

X11, X12,…,X1n 

F(x;μ1)  
variance σ2(μ1) 

Multiple 
drawings 
of latent 

parameters 

Data set-up now 
 
 
 
 
 
 
 
 
 
 

μJ 

F(x;μJ)  
variance σ2(μJ) 

… 

… 

XJ1, XJ2,…,XJn 

Observations 

1 X11 X12 … X1n 

2 X21 X22 … X2n 

J XJ1 XJ2 … XJn R
is

k
 c

la
s

s
e

s
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Estimation of credibility coefficients in 

simple models 

  

X

P(μ) 
mean m, variance τ2 

μ1 

X11, X12,…,X1n 

F(x;μ1)  
variance σ2(μ1) 

Multiple 
drawings 
of latent 

parameters 

Data set-up now 
 
 
 
 
 
 
 
 
 
 
Required quantity Eμ[σ

2(μ)]/τ2 is  
 

Within-class variance 
Between-class variance 

μJ 

F(x;μJ)  
variance σ2(μJ) 

… 

… 

XJ1, XJ2,…,XJn 

Observations 

1 X11 X12 … X1n 

2 X21 X22 … X2n 

: 

J XJ1 XJ2 … XJn R
is

k
 c

la
s

s
e

s
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Analysis of variance 

  
• This requires an analysis of 

variance 

• Required ratio estimated by 
1/F where F is ANOVA test 
statistic for null hypothesis 

H0: μ1=…=μJ 

• This yields following estimator 
of credibility coefficient 

z = (1 + 1/nF)-1 

• Proved by Zehnwirth  (1977) 

Special case σ2(μ) = σ2 

 
 
 
 
 
 
 
 
 
 

Required quantity Eμ[σ
2(μ)]/τ2 = σ2/τ2 is  

 

Within-class variance 
Between-class variance 

Observations 

1 X11 X12 … X1n 

2 X21 X22 … X2n 

J XJ1 XJ2 … XJn R
is

k
 c

la
s

s
e

s
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Analysis of variance as regression 

  
• Write  

Xij = μj +εij 

with E[εij] = 0, Var[εij] = σ2 

• This is a linear regression model 

• Null hypothesis 

H0: μ1=…=μJ 

• Corresponds to model 

Xij = μ +εij 

• ANOVA F-statistic is same as F-
statistic for testing simpler regression 
model against more complex 

– Credibility coefficient obtainable by 
performing a regression F-test 

– Regression software can be used 
 

Observations 

1 X11 X12 … X1n 

2 X21 X22 … X2n 

J XJ1 XJ2 … XJn R
is

k
 c

la
s

s
e

s
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More general model – hierarchical 

example 

  
Pool,  

Parameter 
vector β 

Risk group 1, 
Parameter 
vector β1 

Risk group 2, 
Parameter 
vector β2 

Risk group J, 
Parameter 
vector βJ 

Risk group 11, 
Parameter 
vector β11 

Risk group 12, 
Parameter 
vector β12 

. . . 

Risk group 21, 
Parameter 
vector β21 

Risk group 22, 
Parameter 
vector β22 

. . . 

Each βj is sampled 
from a population 

with mean β 

etc.  (eventually observations) 

Each βjk is sampled 
from a population 

with mean βj 
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Hierarchical example (cont’d) 

• Procedure essentially as for simpler 

example 

• E.g. estimate βjk by 

βjk = (1-zjk) βj + zjk      jk 

and 

zjk = [1 + 1/ njk Fjk]
-1 

 

X
^ ^ 

Pooled mean of all 
observations that have 

node (j.k) as root 

Number of 
observations that have 

node (j.k) as root 
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Hierarchical example (cont’d) 

• Fjk calculated as follows 

– Define null hypothesis H0: βj1= βj2=…= βjk=… (= βj) 

– Set up ANOVA with observations on risk classes 

(j,1), (j,2),… 

• Observations on risk class (j,k) are all those that have node 

(j,k) as root 

– Fjk is F-statistic for this ANOVA 

• Equivalently regression F-statistic if null hypothesis 

described in regression terms 
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Further examples – hierarchical model 

with trend (Sundt, 1979, 1980) 

  
Pool,  

Parameter 
vector β 

Risk group 1, 
Parameter 
vector β1 

Risk group 2, 
Parameter 
vector β2 

Risk group J, 
Parameter 
vector βJ 

Risk group 11, 
Parameter 
vector β11 

Risk group 12, 
Parameter 
vector β12 

. . . 

Risk group 21, 
Parameter 
vector β21 

Risk group 22, 
Parameter 
vector β22 

. . . 

Each αj, γj is sampled 
from a population 
with mean α, γ 

etc.  (eventually observations) 

Each βjk is sampled 
from a population 

with mean βj 

βj trends over time 

i.e. βj = αj + γj t 

αj, γj to be estimated 
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