

Computation of credibility coefficients for pricing

Greg Taylor

Overview

- Statement of the problem
- Fundamentals of credibility theory
- Estimation of credibility coefficients in simple models
- Analysis of variance
- Extension to more general models

Overview

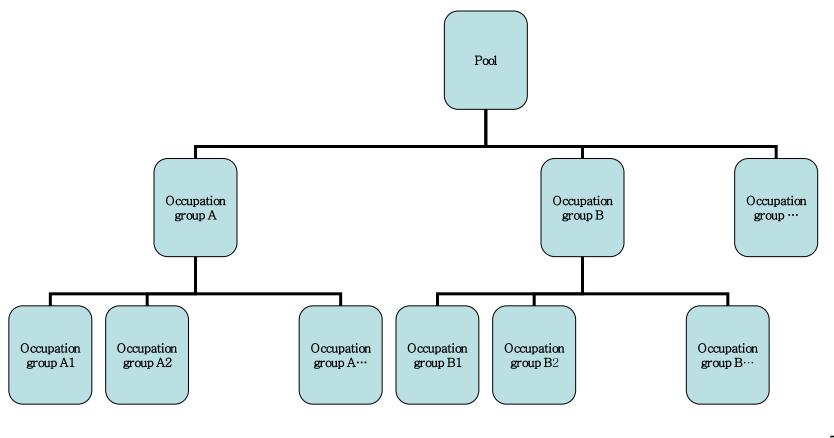
- Material taken from:
- Taylor G (2007). Credibility, hypothesis testing and regression software. **Astin Bulletin**, 37 (in press)
- Also appears as University of Melbourne Research Paper No. 149 at http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf

Statement of the problem

- Suppose you wish to estimate some pricing parameter (e.g. claim frequency)
- You have a measurement of it from data
 - but subject to sampling error
- You also have some prior information on it from somewhere (e.g. industry data)
 - but also subject to uncertainty
- You wish to form an estimate of the parameter that takes both pieces of information into account
- How should you weight those two pieces of information?

General Insurance Pricing Seminar

Example 1 – workers compensation rating by ANZSIC occupation code (Taylor, 1979)



etc.

5

General Insurance Pricing Seminar

Institute of Actuaries of Australia

Example 2 – multiplicative pricing structure (e.g. Motor) (Gisler & Müller, 2007)

 Usual multiplicative pricing structure

		Expected values			
		Pricing factor A =			
		1 2 J			
Pricing factor B =	1	$\alpha_1\beta_1$	$\alpha_1\beta_2$	• • •	$\alpha_1 \beta_J$
	2	$\alpha_2\beta_1$	$\alpha_2\beta_2$	• • •	$\alpha_2 \beta_J$
	:				
Pric	K	$\alpha_K \beta_1$	$\alpha_{K}\beta_{2}$	• • •	$\alpha_{\rm K}\beta_{\rm J}$

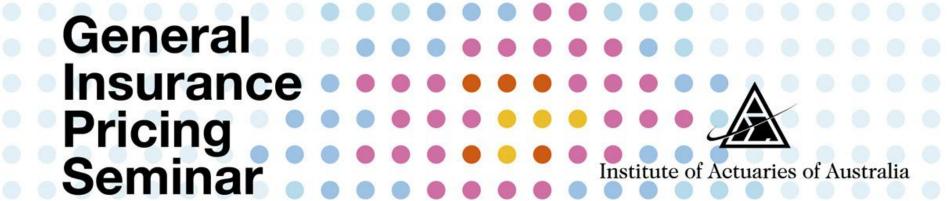
General Insurance Pricing Seminar

Institute of Actuaries of Australia

Example 2 – multiplicative pricing structure (e.g. Motor) (Gisler & Müller, 2007)

- Usual multiplicative pricing structure
- But suppose that data is sparse for some values of a pricing factor
 - E.g. no recorded claims for pricing factor A=2
 - GLM will generate fitted values of zero for A=2
- How might model be changed to give reasonable results in this case?

		Expected values Pricing factor A =				
		1 2 J				
B =	1	$\alpha_1\beta_1$	$\alpha_1\beta_2$	• • •	$\alpha_1 \beta_J$	
actor	2	$\alpha_2\beta_1$	$\alpha_2\beta_2$	• • •	$\alpha_2 \beta_J$	
Pricing factor B	:					
Pric	K	$\alpha_K \beta_1$	$\alpha_{K}\beta_{2}$	•••	$\alpha_K \beta_J$	



Fundamentals of credibility theory

Sampling a population

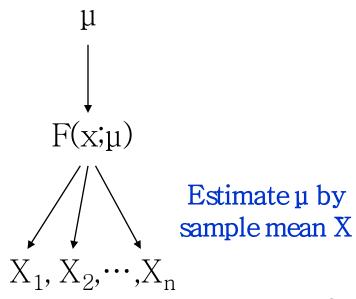
Mean of observations

Distribution defined by mean

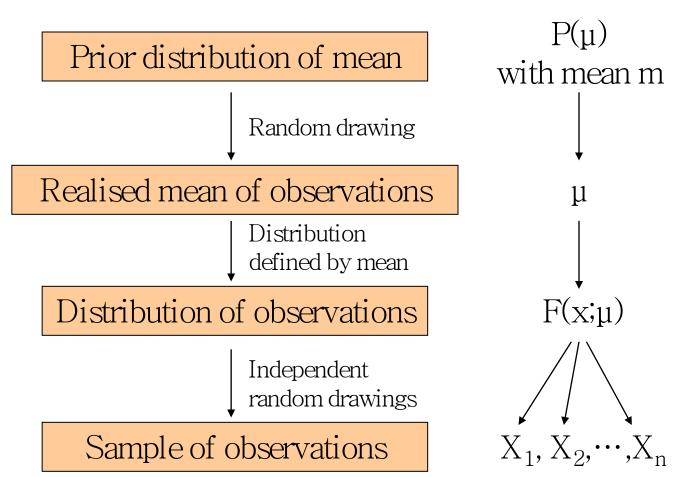
Distribution of observations

Independent random drawings

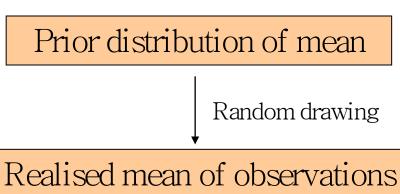
Sample of observations



Sampling a population with a random mean



Sampling a population with a random mean

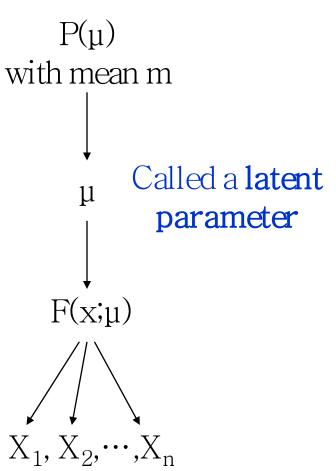


Distribution defined by mean

Distribution of observations

Independent random drawings

Sample of observations



Estimation of a random mean

Prior distribution of mean

Random drawing

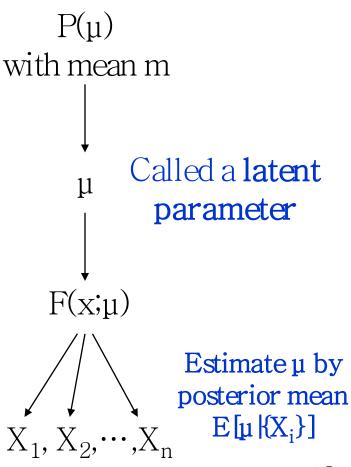
Realised mean of observations

Distribution defined by mean

Distribution of observations

Independent random drawings

Sample of observations



Bayesian framework

Let
$$X = (X_1, X_2, \dots, X_n)$$

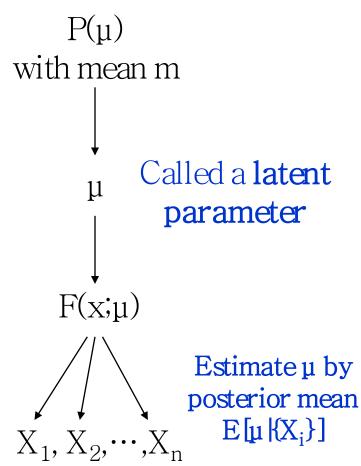
By Bayes theorem

$$E[\mu X] = \int \mu \ p(\mu X) \ d\mu$$

$$= \int \mu \, dP(\mu) \, p(X \mid \mu)$$
$$\int dP(\mu) \, p(X \mid \mu)$$

$$= \int \mu \ dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$
$$\int dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$

Estimate $E[\mu | X]$ by a linear function L(X) of X



Linear Bayes framework

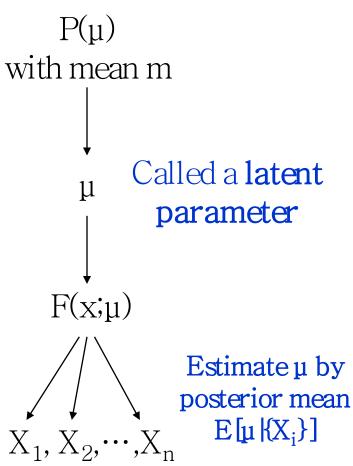
Estimate $E[\mu | X]$ by a linear function L(X) of X

L(X) is called a **linear Bayes** estimator

Choose so as to minimise

$$\int [L(X) - \mu]^2 p(\mu, X) d\mu dX$$

$$= \int [L(X) - \mu]^2 dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$



Linear Bayes framework

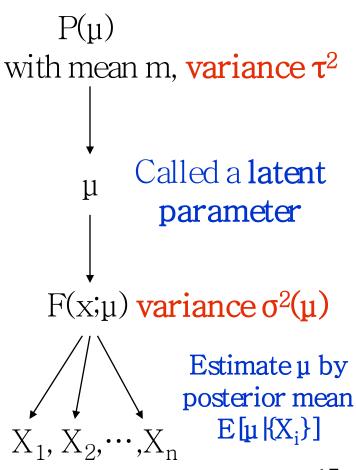
Estimate $E[\mu | X]$ by a linear function L(X) of X

It may be shown that

$$L(X) = (1-z)m + z\overline{X}$$
Prior Credibility Data mean of \overline{X} mean

where

$$z = \{1 + E_{\mu} [\sigma^{2}(\mu)]/n\tau^{2}\}^{-1}$$
Data Prior variance variance



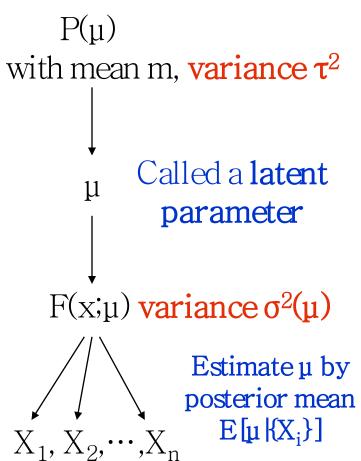
Linear Bayes framework

Credibility coefficient

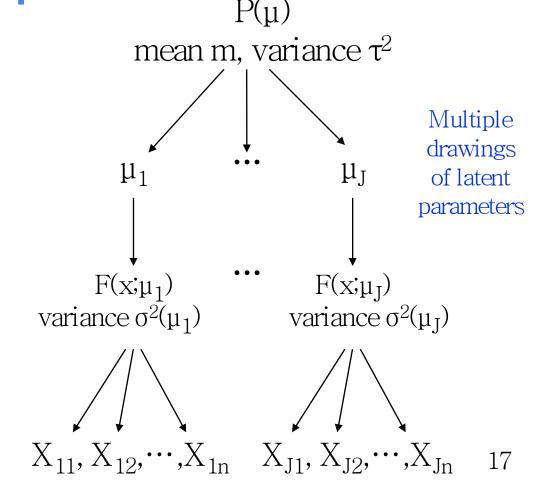
$$z = \{1 + E_u [\sigma^2(\mu)]/n\tau^2\}^{-1}$$

There is a need to estimate the ratio of data variance to prior variance: $E_{\mu} [\sigma^2(\mu)]/\tau^2$

To do so requires more data



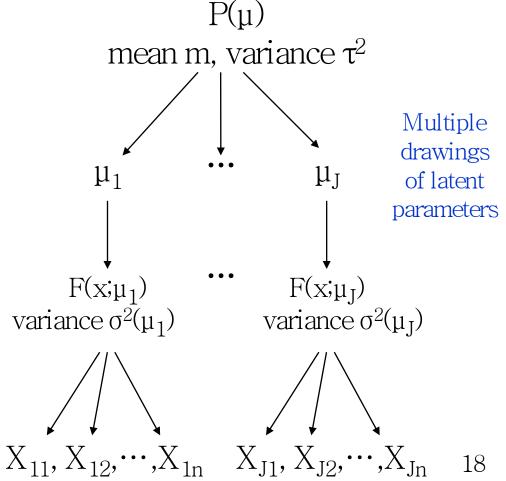
Estimation of credibility coefficients in simple models____



Estimation of credibility coefficients in simple models_____

Sample $\mu_1, \mu_2, \dots \mu_J$ independently from prior (J risk classes)

For each risk class μ_j , draw iid sample of n observations $X_{j1}, X_{j2}, \dots, X_{jn}$

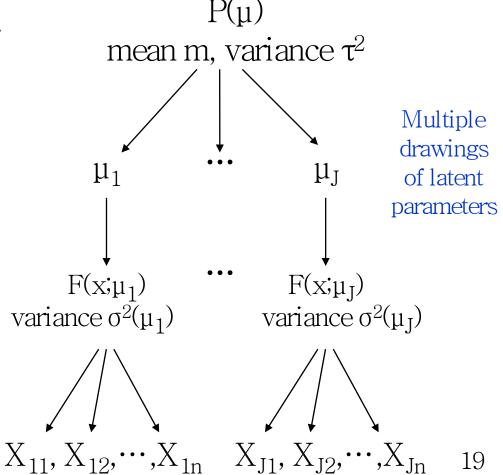


Estimation of credibility coefficients in simple models

Sample $\mu_1, \mu_2, \cdots \mu_J$ from prior (J risk classes)

For each risk class μ_j , draw a iid sample of n observations $X_{j1}, X_{j2}, \dots, X_{jn}$

As before, estimate μ_j by $L(X) = (1-z)m + z \bar{X_j}$ with z as before Still need to estimate $E_{11}[\sigma^2(\mu)]/\tau^2$

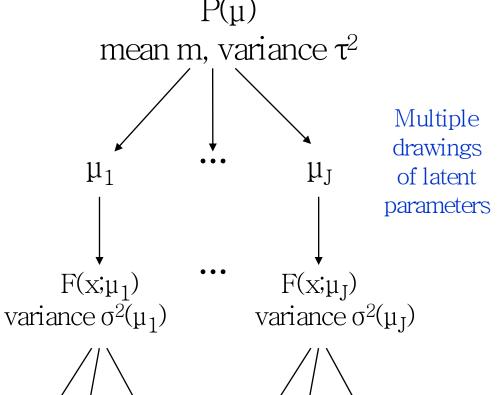


20

Estimation of credibility coefficients in simple models_____

Data set-up now

		Observations			
es	1	X ₁₁	X ₁₂		X _{1n}
class	2	X ₂₁	X ₂₂		X _{2n}
k cl					
Ris	J	X_{J1}	X_{J2}		X_{Jn}



 $X_{11}, X_{12}, \dots, X_{1n}$ $X_{J1}, X_{J2}, \dots, X_{Jn}$

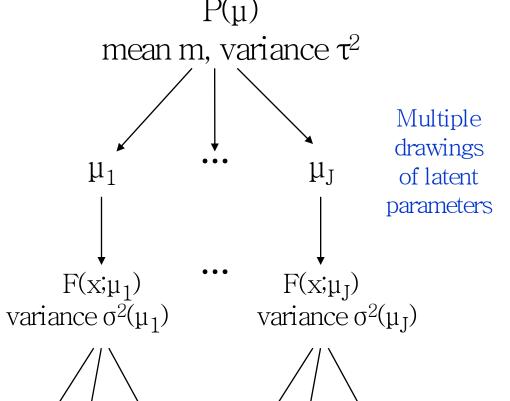
Estimation of credibility coefficients in simple models

Data set-up now

		Observations			
Risk classes	1	X ₁₁	X ₁₂		X _{1n}
	2	X ₂₁	X ₂₂		X _{2n}
	:				
	J	X_{J1}	X_{J2}		X_{Jn}

Required quantity $E_{\mu}[\sigma^2(\mu)]/\tau^2$ is

Within-class variance
Between-class variance



 $X_{11}, X_{12}, \dots, X_{1n}$ $X_{J1}, X_{J2}, \dots, X_{Jn}$

Analysis of variance

Special case
$$\sigma^2(\mu) = \sigma^2$$

		Observations				
es	1	X ₁₁	X ₁₂		X _{1n}	
class	2	X ₂₁	X ₂₂		X _{2n}	
sk cl						
Ris	J	X_{J1}	X_{J2}		X_{Jn}	

Required quantity $E_{\mu}[\sigma^2(\mu)]/\tau^2 = \sigma^2/\tau^2$ is

- This requires an **analysis of variance**
- Required ratio estimated by 1/F where F is ANOVA test statistic for null hypothesis

$$H_0: \mu_1 = ... = \mu_J$$

• This yields following estimator of credibility coefficient

$$z = (1 + 1/nF)^{-1}$$

Proved by Zehnwirth (1977)

Analysis of variance as regression

		Observations			
classes	1	X ₁₁	X ₁₂		X _{1n}
	2	X ₂₁	X ₂₂		X _{2n}
k cl					
Ris	J	X_{J1}	X_{J2}		X_{Jn}

Write

$$X_{ij} = \mu_j + \epsilon_{ij}$$
 with $E[\epsilon_{ij}] = 0$, $Var[\epsilon_{ij}] = \sigma^2$

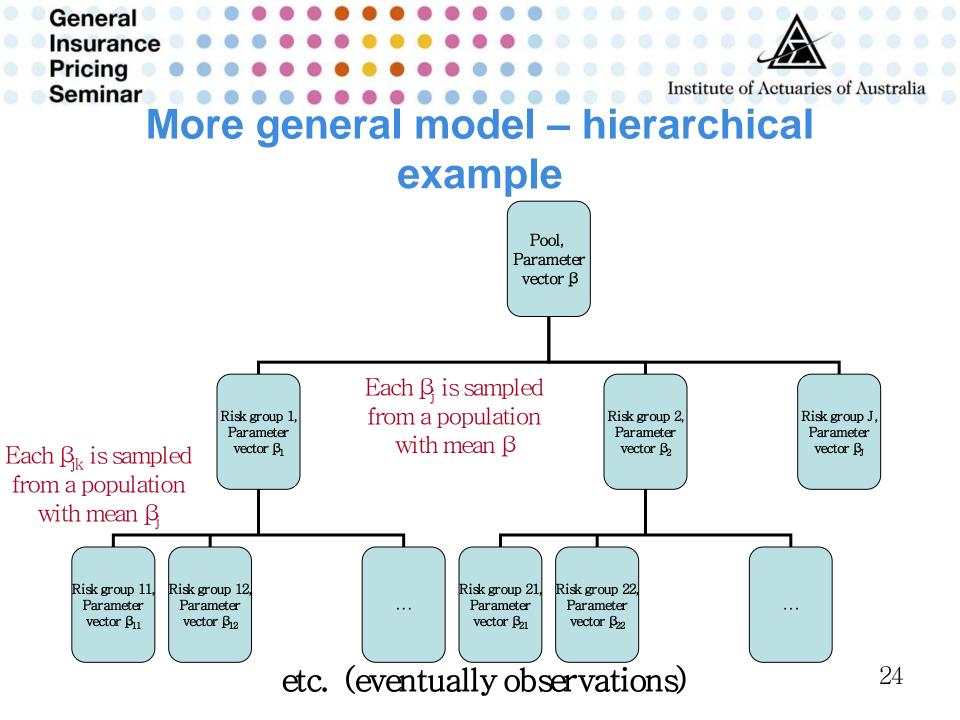
- This is a linear regression model
- Null hypothesis

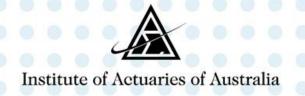
$$H_0: \mu_1 = ... = \mu_J$$

Corresponds to model

$$X_{ij} = \mu + \epsilon_{ij}$$

- ANOVA F-statistic is same as Fstatistic for testing simpler regression model against more complex
 - Credibility coefficient obtainable by performing a regression F-test
 - Regression software can be used 2





Hierarchical example (cont'd)

- Procedure essentially as for simpler example

• E.g. estimate
$$\beta_{jk}$$
 by
$$\hat{\beta}_{jk} = (1-z_{jk}) \hat{\beta}_j + z_{jk} \bar{x}_{jk}$$

and

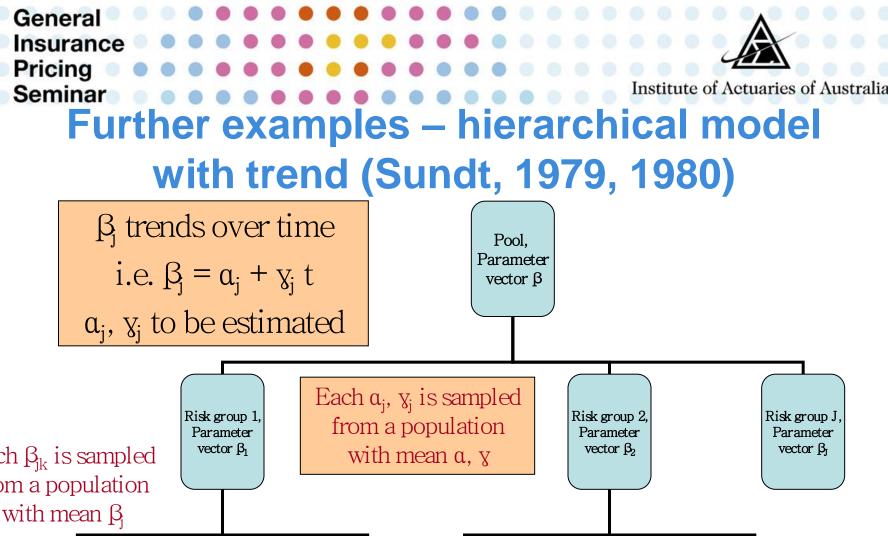
$$z_{jk} = [1 + 1/n_{jk} F_{jk}]^{-1}$$

Pooled mean of all observations that have node (j.k) as root

Number of observations that have node (j.k) as root

Hierarchical example (cont'd)

- F_{ik} calculated as follows
 - Define null hypothesis H_0 : $\beta_{j1} = \beta_{j2} = ... = \beta_{jk} = ... = \beta_j$
 - Set up ANOVA with observations on risk classes (j,1), (j,2),...
 - Observations on risk class (j,k) are all those that have node (j,k) as root
 - $-F_{ik}$ is F-statistic for this ANOVA
 - Equivalently regression F-statistic if null hypothesis described in regression terms



27

Each β_{jk} is sampled from a population with mean α , γ Risk group 11, Parameter vector β_{1} Risk group 12, Parameter vector β_{1} Risk group 12, Parameter vector β_{1} Risk group 21, Parameter vector β_{2} etc. (eventually observations)

References (1)

- Gisler A & Müller P (2007). Credibility for additive and multiplicative models. Astin Colloquium, Orlando, Fl, USA
- Sundt B (1979). A hierarchical credibility regression model. Scandinavian Actuarial Journal, 107-114
- Sundt B (1980). A muti-level hierarchical credibility regression model. Scandinavian Actuarial Journal, 25-32

References (2)

- Taylor G C (1979). Credibility analysis of a general hierarchical model. Scandinavian Actuarial Journal, 1-12.
- Taylor G (2007). Credibility, hypothesis testing and regression software. Astin Bulletin, 37 (in press)
 - Also appears as University of Melbourne Research Paper No. 149 at http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf
- Zehnwirth B (1977). The credible distribution is an admissible Bayes rule. Scandinavian Actuarial Journal, 121-127.