

# Computation of credibility coefficients for pricing

**Greg Taylor** 

#### **Overview**

- Statement of the problem
- Fundamentals of credibility theory
- Estimation of credibility coefficients in simple models
- Analysis of variance
- Extension to more general models

#### **Overview**

- Material taken from:
- Taylor G (2007). Credibility, hypothesis testing and regression software. **Astin Bulletin**, 37 (in press)
- Also appears as University of Melbourne Research Paper No. 149 at <a href="http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf">http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf</a>



#### Statement of the problem

- Suppose you wish to estimate some pricing parameter (e.g. claim frequency)
- You have a measurement of it from data
  - but subject to sampling error
- You also have some prior information on it from somewhere (e.g. industry data)
  - but also subject to uncertainty
- You wish to form an estimate of the parameter that takes both pieces of information into account
- How should you weight those two pieces of information?

General Insurance Pricing Seminar



# Example 1 – workers compensation rating by ANZSIC occupation code (Taylor, 1979)



etc.

5

General Insurance Pricing Seminar



Institute of Actuaries of Australia

# Example 2 – multiplicative pricing structure (e.g. Motor) (Gisler & Müller, 2007)

 Usual multiplicative pricing structure

|                    |   | Expected values    |                       |       |                               |
|--------------------|---|--------------------|-----------------------|-------|-------------------------------|
|                    |   | Pricing factor A = |                       |       |                               |
|                    |   | 1 2 J              |                       |       |                               |
| Pricing factor B = | 1 | $\alpha_1\beta_1$  | $\alpha_1\beta_2$     | • • • | $\alpha_1 \beta_J$            |
|                    | 2 | $\alpha_2\beta_1$  | $\alpha_2\beta_2$     | • • • | $\alpha_2 \beta_J$            |
|                    | : |                    |                       |       |                               |
| Pric               | K | $\alpha_K \beta_1$ | $\alpha_{K}\beta_{2}$ | • • • | $\alpha_{\rm K}\beta_{\rm J}$ |

General Insurance Pricing Seminar



Institute of Actuaries of Australia

# Example 2 – multiplicative pricing structure (e.g. Motor) (Gisler & Müller, 2007)

- Usual multiplicative pricing structure
- But suppose that data is sparse for some values of a pricing factor
  - E.g. no recorded claims for pricing factor A=2
  - GLM will generate fitted values of zero for A=2
- How might model be changed to give reasonable results in this case?

|                  |   | Expected values  Pricing factor A = |                       |       |                    |  |
|------------------|---|-------------------------------------|-----------------------|-------|--------------------|--|
|                  |   | 1 2 J                               |                       |       |                    |  |
| B =              | 1 | $\alpha_1\beta_1$                   | $\alpha_1\beta_2$     | • • • | $\alpha_1 \beta_J$ |  |
| actor            | 2 | $\alpha_2\beta_1$                   | $\alpha_2\beta_2$     | • • • | $\alpha_2 \beta_J$ |  |
| Pricing factor B | : |                                     |                       |       |                    |  |
| Pric             | K | $\alpha_K \beta_1$                  | $\alpha_{K}\beta_{2}$ | •••   | $\alpha_K \beta_J$ |  |



# Fundamentals of credibility theory



## Sampling a population

#### Mean of observations

Distribution defined by mean

#### Distribution of observations

Independent random drawings

Sample of observations





#### Sampling a population with a random mean





#### Sampling a population with a random mean



Distribution defined by mean

Distribution of observations

Independent random drawings

Sample of observations





#### **Estimation of a random mean**

Prior distribution of mean

Random drawing

Realised mean of observations

Distribution defined by mean

Distribution of observations

Independent random drawings

Sample of observations





## **Bayesian framework**

Let 
$$X = (X_1, X_2, \dots, X_n)$$

By Bayes theorem

$$E[\mu X] = \int \mu \ p(\mu X) \ d\mu$$

$$= \int \mu \, dP(\mu) \, p(X \mid \mu)$$
$$\int dP(\mu) \, p(X \mid \mu)$$

$$= \int \mu \ dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$
$$\int dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$

Estimate  $E[\mu | X]$  by a linear function L(X) of X





## **Linear Bayes framework**

Estimate  $E[\mu | X]$  by a linear function L(X) of X

L(X) is called a **linear Bayes** estimator

Choose so as to minimise

$$\int [L(X) - \mu]^2 p(\mu, X) d\mu dX$$

$$= \int [L(X) - \mu]^2 dP(\mu) \int dF(X_1 \mu) \cdots dF(X_n \mu)$$





## **Linear Bayes framework**

Estimate  $E[\mu | X]$  by a linear function L(X) of X

It may be shown that

$$L(X) = (1-z)m + z\overline{X}$$
Prior Credibility Data mean of  $\overline{X}$  mean

where

$$z = \{1 + E_{\mu} [\sigma^{2}(\mu)]/n\tau^{2}\}^{-1}$$
Data Prior variance variance





## **Linear Bayes framework**

Credibility coefficient

$$z = \{1 + E_u [\sigma^2(\mu)]/n\tau^2\}^{-1}$$

There is a need to estimate the ratio of data variance to prior variance:  $E_{\mu} [\sigma^2(\mu)]/\tau^2$ 

To do so requires more data





# Estimation of credibility coefficients in simple models\_\_\_\_





# Estimation of credibility coefficients in simple models\_\_\_\_\_

Sample  $\mu_1, \mu_2, \dots \mu_J$  independently from prior (J risk classes)

For each risk class  $\mu_j$ , draw iid sample of n observations  $X_{j1}, X_{j2}, \dots, X_{jn}$ 





# Estimation of credibility coefficients in simple models

Sample  $\mu_1, \mu_2, \cdots \mu_J$  from prior (J risk classes)

For each risk class  $\mu_j$ , draw a iid sample of n observations  $X_{j1}, X_{j2}, \dots, X_{jn}$ 

As before, estimate  $\mu_j$  by  $L(X) = (1-z)m + z \bar{X_j}$  with z as before Still need to estimate  $E_{11}[\sigma^2(\mu)]/\tau^2$ 





20

# Estimation of credibility coefficients in simple models\_\_\_\_\_

Data set-up now

|       |   | Observations    |                 |  |                 |
|-------|---|-----------------|-----------------|--|-----------------|
| es    | 1 | X <sub>11</sub> | X <sub>12</sub> |  | X <sub>1n</sub> |
| class | 2 | X <sub>21</sub> | X <sub>22</sub> |  | X <sub>2n</sub> |
| k cl  |   |                 |                 |  |                 |
| Ris   | J | $X_{J1}$        | $X_{J2}$        |  | $X_{Jn}$        |



 $X_{11}, X_{12}, \dots, X_{1n}$   $X_{J1}, X_{J2}, \dots, X_{Jn}$ 



# Estimation of credibility coefficients in simple models

Data set-up now

|              |   | Observations    |                 |  |                 |
|--------------|---|-----------------|-----------------|--|-----------------|
| Risk classes | 1 | X <sub>11</sub> | X <sub>12</sub> |  | X <sub>1n</sub> |
|              | 2 | X <sub>21</sub> | X <sub>22</sub> |  | X <sub>2n</sub> |
|              | : |                 |                 |  |                 |
|              | J | $X_{J1}$        | $X_{J2}$        |  | $X_{Jn}$        |

Required quantity  $E_{\mu}[\sigma^2(\mu)]/\tau^2$  is

Within-class variance
Between-class variance



 $X_{11}, X_{12}, \dots, X_{1n}$   $X_{J1}, X_{J2}, \dots, X_{Jn}$ 

#### **Analysis of variance**

Special case 
$$\sigma^2(\mu) = \sigma^2$$

|       |   | Observations    |                 |  |                 |  |
|-------|---|-----------------|-----------------|--|-----------------|--|
| es    | 1 | X <sub>11</sub> | X <sub>12</sub> |  | X <sub>1n</sub> |  |
| class | 2 | X <sub>21</sub> | X <sub>22</sub> |  | X <sub>2n</sub> |  |
| sk cl |   |                 |                 |  |                 |  |
| Ris   | J | $X_{J1}$        | $X_{J2}$        |  | $X_{Jn}$        |  |

Required quantity  $E_{\mu}[\sigma^2(\mu)]/\tau^2 = \sigma^2/\tau^2$  is

- This requires an **analysis of variance**
- Required ratio estimated by 1/F where F is ANOVA test statistic for null hypothesis

$$H_0: \mu_1 = ... = \mu_J$$

• This yields following estimator of credibility coefficient

$$z = (1 + 1/nF)^{-1}$$

Proved by Zehnwirth (1977)



#### Analysis of variance as regression

|         |   | Observations    |                 |  |                 |
|---------|---|-----------------|-----------------|--|-----------------|
| classes | 1 | X <sub>11</sub> | X <sub>12</sub> |  | X <sub>1n</sub> |
|         | 2 | X <sub>21</sub> | X <sub>22</sub> |  | X <sub>2n</sub> |
| k cl    |   |                 |                 |  |                 |
| Ris     | J | $X_{J1}$        | $X_{J2}$        |  | $X_{Jn}$        |

Write

$$X_{ij} = \mu_j + \epsilon_{ij}$$
 with  $E[\epsilon_{ij}] = 0$ ,  $Var[\epsilon_{ij}] = \sigma^2$ 

- This is a linear regression model
- Null hypothesis

$$H_0: \mu_1 = ... = \mu_J$$

Corresponds to model

$$X_{ij} = \mu + \epsilon_{ij}$$

- ANOVA F-statistic is same as Fstatistic for testing simpler regression model against more complex
  - Credibility coefficient obtainable by performing a regression F-test
  - Regression software can be used 2





## Hierarchical example (cont'd)

- Procedure essentially as for simpler example

• E.g. estimate 
$$\beta_{jk}$$
 by 
$$\hat{\beta}_{jk} = (1-z_{jk}) \hat{\beta}_j + z_{jk} \bar{x}_{jk}$$

and

$$z_{jk} = [1 + 1/n_{jk} F_{jk}]^{-1}$$

Pooled mean of all observations that have node (j.k) as root

Number of observations that have node (j.k) as root

## Hierarchical example (cont'd)

- F<sub>ik</sub> calculated as follows
  - Define null hypothesis  $H_0$ :  $\beta_{j1} = \beta_{j2} = ... = \beta_{jk} = ... = \beta_j$
  - Set up ANOVA with observations on risk classes (j,1), (j,2),...
    - Observations on risk class (j,k) are all those that have node (j,k) as root
  - $-F_{ik}$  is F-statistic for this ANOVA
    - Equivalently regression F-statistic if null hypothesis described in regression terms



27

Each  $\beta_{jk}$  is sampled from a population with mean  $\alpha$ ,  $\gamma$ Risk group 11, Parameter vector  $\beta_{1}$ Risk group 12, Parameter vector  $\beta_{1}$ Risk group 12, Parameter vector  $\beta_{1}$ Risk group 21, Parameter vector  $\beta_{2}$ etc. (eventually observations)

## References (1)

- Gisler A & Müller P (2007). Credibility for additive and multiplicative models. Astin Colloquium, Orlando, Fl, USA
- Sundt B (1979). A hierarchical credibility regression model. Scandinavian Actuarial Journal, 107-114
- Sundt B (1980). A muti-level hierarchical credibility regression model. Scandinavian Actuarial Journal, 25-32



## References (2)

- Taylor G C (1979). Credibility analysis of a general hierarchical model. Scandinavian Actuarial Journal, 1-12.
- Taylor G (2007). Credibility, hypothesis testing and regression software. Astin Bulletin, 37 (in press)
  - Also appears as University of Melbourne Research Paper No. 149 at <a href="http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf">http://www.economics.unimelb.edu.au/SITE/actwww/wps2007/No149.pdf</a>
- Zehnwirth B (1977). The credible distribution is an admissible Bayes rule. Scandinavian Actuarial Journal, 121-127.